Attraverso la suite di prodotti di machine learning AutoML, e una serie di ‘mattoni base’ di ML pre-addestrati, il colosso di Mountain View vuol rendere l’intelligenza artificiale facilmente accessibile, e utile, anche per sviluppatori e imprese privi di particolare know-how in materia
L’era dell’apprendimento automatico è già in pieno svolgimento, e le imprese lo usano per stare un passo avanti rispetto alla concorrenza: lo indica una survey del MIT, svolta nel 2017 in collaborazione con Google Cloud. Paolo Fabbri, Cloud Customer Engineer di Google, cita qualche dato del sondaggio in una sessione tematica, intitolata “Create business advantage with Google Cloud Data Analytics & AI”, al recente Google Cloud Summit di Milano. La survey interpella 375 responsabili IT e dirigenti business, appartenenti a una varietà di organizzazioni nel mondo, sull’uso delle tecnologie di machine learning (ML): per il 46% degli IT leader che le usano, il vantaggio competitivo è classificato tra i principali obiettivi dei progetti di machine learning. Inoltre, il 50% di coloro che ha implementato il ML è in grado di quantificare il ROI (return on investment). Tra i risultati e i benefici, le decisioni ‘data-driven’ diventano più del doppio; si possono prendere decisioni fino a cinque volte più rapidamente, e la fase di esecuzione diventa tre volte più veloce.
Paolo Fabbri, Cloud Customer Engineer di Google
Data science, forte mancanza di competenze
Chi usa l’intelligenza artificiale (AI) è più innovatore e ottiene un valore che si traduce nella capacità di arrivare prima sul mercato rispetto alla concorrenza: ma, aggiunge Fabbri, “oltre a tecnologia e processi, il terzo ingrediente per vincere sono le persone, perché i dati da soli non bastano, ed oggi esiste un forte gap conoscitivo nelle tecnologie”. I dati denunciano una carenza di competenze nella cosiddetta scienza dei dati: nel mondo si stimano infatti circa 21 milioni di sviluppatori, ma soltanto meno di un milione di ‘data scientists’, e solo qualche migliaio di ricercatori nelle discipline di deep learning.
Davvero pochi utenti, quindi, si possono oggi considerare in grado di creare un modello di ML personalizzato: ed ecco perché, in questa fase, l’obiettivo di Google è ‘democratizzare’ la AI, rendendola facilmente accessibile alle diverse tipologie di utilizzatori, quindi veloce e facile da usare sia per gli sviluppatori, sia per le imprese.
La sproporzione tra sviluppatori e data scientist
Di esempi ce ne sono già: il grande retailer online di drogheria Ocado, nel Regno Unito, sta migliorando l’efficienza operativa e il servizio clienti usando proprio le funzionalità di machine learning della Google Cloud Platform. Ora Ocado riesce a rispondere alle email urgenti dei clienti quattro volte più velocemente rispetto al passato, ha incrementato l’efficienza del contact center del 7% e la velocità di analisi dei dati dell’80%.
Da menzionare anche Rolls-Royce, che ha un accordo con Google per lo sviluppo di sistemi di ‘intelligent awareness’ in grado di rendere i vascelli esistenti più sicuri e autonomi: in sostanza, Rolls-Royce, usando il Cloud Machine Learning Engine di Google, è in grado di addestrare ulteriormente il proprio sistema di classificazione degli oggetti ‘AI-based’, per identificare e tracciare gli oggetti che un’imbarcazione può incontrare in mare lungo il proprio percorso.
“Scegliere Google come partner nella AI presenta molti vantaggi per un’organizzazione – spiega Fabbri – non solo scalabilità e massime prestazioni per i workload di AI, ma possibilità di accedere ai numerosi ‘AI building blocks’ (Cloud Translation, Cloud Vision, Cloud Natural Language, Cloud Speech, Cloud Video Intelligence), già pre-addestrati per risolvere determinate necessità di business, nonché alla suite di prodotti di machine learning AutoML, che abilita gli sviluppatori con limitate competenze di ML a eseguire il training di modelli di appredimento automatico di alta qualità.”
La strategia e i prodotti di Google per rendere più facilmente accessibili le tecnologie di machine learning
La strategia e i prodotti di Google per rendere più facilmente accessibili le tecnologie di machine learning
La strategia e i prodotti di Google per rendere più facilmente accessibili le tecnologie di machine learning
Valuta la qualità di questo articolo
La tua opinione è importante per noi!
Iscriviti alla newsletter per ricevere articoli di tuo interesse
email
Prendi visione dell'Informativa Privacy e, se vuoi, seleziona la casella di consenso.
Nell’augmented intelligence la mente umana è il vero valore
18 Lug 2018
di Patrizia Fabbri
Condividi il post
Condividi
Video
Guidare l’innovazione nella Data Economy
11 Lug 2018
Condividi il post
Condividi
Attualità
Google, il suo universo cloud e il machine learning
05 Giu 2018
di Giorgio Fusari
Condividi il post
Condividi
Articolo 1 di 4
I tuoi contenuti, la tua privacy!
Su questo sito utilizziamo cookie tecnici necessari alla navigazione e funzionali all’erogazione del servizio.
Utilizziamo i cookie anche per fornirti un’esperienza di navigazione sempre migliore, per facilitare le interazioni con le nostre funzionalità social e per consentirti di ricevere comunicazioni di marketing aderenti alle tue abitudini di navigazione e ai tuoi interessi.
Puoi esprimere il tuo consenso cliccando su ACCETTA TUTTI I COOKIE. Chiudendo questa informativa, continui senza accettare.
Potrai sempre gestire le tue preferenze accedendo al nostro COOKIE CENTER e ottenere maggiori informazioni sui cookie utilizzati, visitando la nostra COOKIE POLICY.
ACCETTA
PIÙ OPZIONI
Cookie Center
ACCETTA TUTTO
RIFIUTA TUTTO
Tramite il nostro Cookie Center, l'utente ha la possibilità di selezionare/deselezionare le singole categorie di cookie che sono utilizzate sui siti web.
Per ottenere maggiori informazioni sui cookie utilizzati, è comunque possibile visitare la nostra COOKIE POLICY.
ACCETTA TUTTO
RIFIUTA TUTTO
COOKIE TECNICI
Strettamente necessari
I cookie tecnici sono necessari al funzionamento del sito web perché abilitano funzioni per facilitare la navigazione dell’utente, che per esempio potrà accedere al proprio profilo senza dover eseguire ogni volta il login oppure potrà selezionare la lingua con cui desidera navigare il sito senza doverla impostare ogni volta.
COOKIE ANALITICI
I cookie analitici, che possono essere di prima o di terza parte, sono installati per collezionare informazioni sull’uso del sito web. In particolare, sono utili per analizzare statisticamente gli accessi o le visite al sito stesso e per consentire al titolare di migliorarne la struttura, le logiche di navigazione e i contenuti.
COOKIE DI PROFILAZIONE E SOCIAL PLUGIN
I cookie di profilazione e i social plugin, che possono essere di prima o di terza parte, servono a tracciare la navigazione dell’utente, analizzare il suo comportamento ai fini marketing e creare profili in merito ai suoi gusti, abitudini, scelte, etc. In questo modo è possibile ad esempio trasmettere messaggi pubblicitari mirati in relazione agli interessi dell’utente ed in linea con le preferenze da questi manifestate nella navigazione online.